Adjusting Dependence Relations for Semi-Lazy TAN Classifiers

نویسندگان

  • Zhihai Wang
  • Geoffrey I. Webb
  • Fei Zheng
چکیده

The naive Bayesian classifier is a simple and effective classification method, which assumes a Bayesian network in which each attribute has the class label as its only one parent. But this assumption is not obviously hold in many real world domains. Tree-Augmented Naive Bayes (TAN) is a state-of-the-art extension of the naive Bayes, which can express partial dependence relations among attributes. In this paper, we analyze the implementations of two different TAN classifiers and their tree structures. Experiments show how different dependence relations impact on accuracy of TAN classifiers. We present a kind of semi-lazy TAN classifier, which builds a TAN identical to the original TAN at training time, but adjusts the dependence relations for a new test instance at classification time. Our extensive experimental results show that this kind of semi-lazy classifier delivers lower error than the original TAN and is more efficient than Superparent TAN .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-Lazy Learning: Combining Clustering and Classifiers to Build More Accurate Models

Eager learners such as neural networks, decision trees, and naïve Bayes classifiers construct a single model from the training data before observing any test set instances. In contrast, lazy learners such as Knearest neighbor consider a test set instance before they generalize beyond the training data. This allows making predictions from only a specific selection of instances most similar to th...

متن کامل

Coupling Semi-Supervised Learning of Categories and Relations

We consider semi-supervised learning of information extraction methods, especially for extracting instances of noun categories (e.g., ‘athlete,’ ‘team’) and relations (e.g., ‘playsForTeam(athlete,team)’). Semisupervised approaches using a small number of labeled examples together with many unlabeled examples are often unreliable as they frequently produce an internally consistent, but neverthel...

متن کامل

General and Local: Averaged k-Dependence Bayesian Classifiers

The inference of a general Bayesian network has been shown to be an NP-hard problem, even for approximate solutions. Although k-dependence Bayesian (KDB) classifier can construct at arbitrary points (values of k) along the attribute dependence spectrum, it cannot identify the changes of interdependencies when attributes take different values. Local KDB, which learns in the framework of KDB, is ...

متن کامل

UTD-HLT-CG: Semantic Architecture for Metonymy Resolution and Classification of Nominal Relations

In this paper we present a semantic architecture that was employed for processing two different SemEval 2007 tasks: Task 4 (Classification of Semantic Relations between Nominals) and Task 8 (Metonymy Resolution). The architecture uses multiple forms of syntactic, lexical, and semantic information to inform a classification-based approach that generates a different model for each machine learnin...

متن کامل

Lazy Classifiers Using P-trees

Lazy classifiers store all of the training samples and do not build a classifier until a new sample needs to be classified. It differs from eager classifiers, such as decision tree induction, which build a general model (such as a decision tree) before receiving new samples. K-nearest neighbor (KNN) classification is a typical lazy classifier. Given a set of training data, a knearest neighbor c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003