Adjusting Dependence Relations for Semi-Lazy TAN Classifiers
نویسندگان
چکیده
The naive Bayesian classifier is a simple and effective classification method, which assumes a Bayesian network in which each attribute has the class label as its only one parent. But this assumption is not obviously hold in many real world domains. Tree-Augmented Naive Bayes (TAN) is a state-of-the-art extension of the naive Bayes, which can express partial dependence relations among attributes. In this paper, we analyze the implementations of two different TAN classifiers and their tree structures. Experiments show how different dependence relations impact on accuracy of TAN classifiers. We present a kind of semi-lazy TAN classifier, which builds a TAN identical to the original TAN at training time, but adjusts the dependence relations for a new test instance at classification time. Our extensive experimental results show that this kind of semi-lazy classifier delivers lower error than the original TAN and is more efficient than Superparent TAN .
منابع مشابه
Semi-Lazy Learning: Combining Clustering and Classifiers to Build More Accurate Models
Eager learners such as neural networks, decision trees, and naïve Bayes classifiers construct a single model from the training data before observing any test set instances. In contrast, lazy learners such as Knearest neighbor consider a test set instance before they generalize beyond the training data. This allows making predictions from only a specific selection of instances most similar to th...
متن کاملCoupling Semi-Supervised Learning of Categories and Relations
We consider semi-supervised learning of information extraction methods, especially for extracting instances of noun categories (e.g., ‘athlete,’ ‘team’) and relations (e.g., ‘playsForTeam(athlete,team)’). Semisupervised approaches using a small number of labeled examples together with many unlabeled examples are often unreliable as they frequently produce an internally consistent, but neverthel...
متن کاملGeneral and Local: Averaged k-Dependence Bayesian Classifiers
The inference of a general Bayesian network has been shown to be an NP-hard problem, even for approximate solutions. Although k-dependence Bayesian (KDB) classifier can construct at arbitrary points (values of k) along the attribute dependence spectrum, it cannot identify the changes of interdependencies when attributes take different values. Local KDB, which learns in the framework of KDB, is ...
متن کاملUTD-HLT-CG: Semantic Architecture for Metonymy Resolution and Classification of Nominal Relations
In this paper we present a semantic architecture that was employed for processing two different SemEval 2007 tasks: Task 4 (Classification of Semantic Relations between Nominals) and Task 8 (Metonymy Resolution). The architecture uses multiple forms of syntactic, lexical, and semantic information to inform a classification-based approach that generates a different model for each machine learnin...
متن کاملLazy Classifiers Using P-trees
Lazy classifiers store all of the training samples and do not build a classifier until a new sample needs to be classified. It differs from eager classifiers, such as decision tree induction, which build a general model (such as a decision tree) before receiving new samples. K-nearest neighbor (KNN) classification is a typical lazy classifier. Given a set of training data, a knearest neighbor c...
متن کامل